Polyoxoanions Derived from A- β -SiW₉O₃₄¹⁰: Synthesis, Single-Crystal Structural Determination, and Solution Structural Characterization by ¹⁸³W NMR and IR of $A - \beta - Si_2W_{18}Ti_6O_{77}^{14-}$

Yin Lin, Timothy J. R. Weakley, Brian Rapko, and Richard G. Finke'

Department of Chemistry, University of Oregon, Eugene, Oregon **97403**

Received May **27,** *1993'*

The previously unknown polyoxometalate $A - \beta - Si_2W_{18}Ti_6O_{77}^{14}$ has been prepared by the reaction of $A - \beta$ - $H\text{SiW}_9\text{O}_{34}^9$ - with Ti(O)(C₂O₄)₂²- or Ti(O)SO₄ under controlled pH conditions; yield optimization experiments are also reported. Isolation of this new Ti^{IV}-substituted polyoxometalate was accomplished both as its water-soluble K⁺ salt and as its organic-solvent-soluble Bu₄N⁺ salt. The unambiguous characterization of A- β -Si₂W₁₈Ti₆O₇₇¹⁴ was accomplished by means of elemental analysis, IR and ¹⁸³W NMR spectroscopy, and a single-crystal X-ray structural analysis of the Bu₄N⁺/H⁺ salt, $(Bu_4N)_7H_7Si_2W_{18}Ti_6O_{77}$ (*Pbcm*; $a = 19.958(11)$, $b = 36.880(8)$, $c =$ **28.936(5) A;** *Z* = **4;** *R* = **0.072** for **4614** observed independent reflections). The X-ray diffraction structural analysis reveals that the correct structural formulation is $A - \beta$ -(SiW₉O₃₇)₂(Ti-O-Ti)₃¹⁴, a condensed aggregate of two hypothetical "A- β -SiW₉(TiOH)₃O₃₇^{7-"} Keggin units that have lost three H₂O by forming three Ti-O-Ti bridges. The present synthesis and characterization, plus recent results from the literature, reveal that a new subclass of polyoxoanions of general formula $X_2M_{18}M'_{6}O_{77}$ can be prepared for M' in at least three different oxidation states, $M'(III)$, $M'(IV)$, and $M'(V)$.

Polyoxoanions are a broad class of compounds that are of considerable current interest, from **both** fundamental and practical points of view.'-3 Especially important presently are the synthesis and characterization of new polyoxoanion compositions and structural types, as only a small percentage of the possible polyoxometalates have been prepared to date.'

Several years ago, we initiated a program aimed at the synthesis and characterization of a series of Keggin-type, $PM_{12}O_{40}$ ⁺, and Wells-Dawson-type, $P_2W_{18}O_{62}^6$, polyoxoanions that were trisubstituted⁴⁻⁶ with lower-valent metals such as $M = Nb^V, Zr^{1V}$, Ti^{IV} and thus of general formulas SiW₉M₃O₄₀^{μ} and P₂W₁₅- M_3O_{62} ^{m-}. We reasoned that such new polyoxometalates would be important in their own right and might also serve as novel

- (a) Pope,.M. T.; MIiller, A. *Angew. Chem., In?. Ed. Engl.* **1991,30,34.** (b) Pope, M. T. *Heteropoly* **and** *Isopoly Oxometalates;* Springer- Verlag: New York, **1983.** Day, V. W.; Klemperer, W. G. *Science* **1985, 228, 533.**
-
- One **good** example of the practical interest in low-valent transitionmetal-substituted polyoxoanions is in their uscas highly oxidation resistant catalysts for so-called "inorganic porphyrin analog" oxidation reactions:
(a) Katsoulis, D. E.; Pope, M. T. *J. Am. Chem. Soc.* **1984**, *106*, 2737. (b) Katsoulis, D. E.; Pope, M. T. J. Chem. Soc., Chem. Commun.1986,
1186. (c) Harmalker, S. P.; Pope, M. T. J. Inorg. Biochem. 1986, 28,
85. (d) Katsoulis, D. E.; Tausch, V. S.; Pope, M. T. Inorg. Chem. 1987, **26,215.** *(e)* Piepgrass, K.; Pope, M. T. *J. Am. Chem.* Soc. **1989,111, 753.** (0 Katsoulis, **D.** E.;Pope, M.T. *J. Chem.Soc.,* Dalton **Tranr.1989, 1483.** (g) Rong, C.; Pope, M. T. *J. Am. Chem.* Soc. **1992,114, 2932. (h)** Hill, C. L.; Brown, R. B., Jr. *J. Am. Chem.* **Soc. 1986,108,536.** (i) *Activation and Functionalization of Alkanes;* Hill, C. L., Ed.; Wiley-Interscience: New York, **1989.** (j) Faraj, M.; Hill, C. L. *J. Chem.* **Soc..** *Chem. Commun.* **1987, 1487.** (k) Lyons, J. E.; Ellis, P. E., Jr.; Myers, **H.** K., Jr.; Slud, G.; Langdale, W. A. U. **S.** Patent **4 803** 187, **1989. (I)** Neumann, R.; Abu-Gnim, C. *J. Chem.* Soc., *Chem. Commun.* **1989,1324.** (m) Neumann,R.;Abu-Gnim,C. *J. Am. Chem.* **Soc. 1990, 112,6025.** (n) Lyon, D. K.; Miller, W. K.; Novet, T.; Domaille, P. J.; Evitt, E.; Johnson, D. C.; Finke, R. G. *J. Am. Chem.* **Soc. 1991, 113, 7209.** *(0)* Manauy, D.; Bartoli, J. F.; Battioni, P.; Lyon, D. K.; Finke, R. G. *J. Am. Chem. Soc.* **1991, 113, 7222.**
- The tri-vanadium(V)-substituted polyoxoanions SiW₉V₃O₄₀⁷ and P₂W₁₅V₃O₆₂² are known: Finke, R. G.; Rapko, B.; Saxton, R. J.; Domaille, P. J. *J. Am. Chem. Soc.* 1986, 108, 2947 (interested readers should see the important early work on these species by Hervé, Tézé, Pope, and co-workers, refs **6a** and **6b** in the above paper).
- (5) Also known are SiW₉Mo_{3-x}V_xO₄₀^{(4+x)-} (x = 1, 2): Cadot, E.; Thouvenot, R.; Tézé, A.; Hervé, G. *Inorg. Chem.* **1992**, 31, 4128.
- Also known is PW9Mo,O&: Kawafune, I.; Matsubayashi,G.-E. *Chem.* (6) Lett. **1992, 1869.**

soluble-oxide catalyst-support systems. Over the intervening decade, this latter goal has been realized.^{4,7} with polyoxoanions such as $SiW_9Nb_3O_{40}^7$ and $P_2W_{15}Nb_3O_{62}^9$ having been synthesized and successfully utilized as oxide-support materials.^{2,8} The first example of polyoxoanion-supported catalysis, based on these high-symmetry, high-basicity, and custom-designed trisubstituted polyoxoanions, is also now available as reported elsewhere.9

Attempts to replace W^{VI} in the Keggin or Wells-Dawson structures with increasingly lower-valent metals such as Zr^{IV} or Ti^{IV} can be problematic, yielding surprises in the resultant product's composition or structure.¹⁰ A case in point here is the Zr^{IV} -containing, crystallographically characterized $[(A-*β*-<$ $\text{SiW}_9\text{O}_{34}$ ₂(ZrOH)₃]¹¹⁻ in which only 1.5 Zr^{IV}, and not the anticipated 3.0 Zr^{1V}, can be added per each SiW₉O₃₄¹⁰⁻ lacunary anion.¹¹ A second case in point is provided by the attempts to prepare the still unknown tri- Zn^{2+} -substituted Keggin "SiW₉- $[Zn(OH₂)]_3O_{37}^{10-7}$ or Wells-Dawson "P₂W₁₅ [Zn(OH₂)] $_3O_{59}^{12-7}$ polyoxoanions; efforts by both our and a separate research group have to date been unsuccessful.^{11b,c} These attempted syntheses

^{*} To whom correspondence should be addressed at the Department of Chemistry, Colorado State University, Ft. Collins, CO 80523.
 Chemistry, Physics Advance *ACS Abstracts*, October 1, 1993.

^{(7) (}a) The first example of the $X_2M_{18}M'_{6}O_{77}$ ⁺ structural type, namely A - β -Si₂W₁₈Nb₆O₇₇⁸⁻, and its cleavage with base into SiW₉Nb₃O₄₀⁷- are from M. Droege's Ph.D thesis work,⁴⁶ published in part in: Finke, R. G.; Droegc, M. W. *J. Am. Chem.* Soc. **1984, lab, 7274.** (b) Finke, R. G.; Rapko, B.; Domaille, P. J. *Organometallics* **1986,5,175.** *(c)* Edlund, D. J.; Saxton, R. J.; Lyon, D. K.; Finke, R. G. *Organometallics* **1988,** 7, **1692.** (d) Finke, R. G.; Lyon, D. K.; Nomiya, K.; **Sur,** *S.;* Mizuno, N. *Inorg. Chem.* **1990, 29, 1784.**

team exploring polyoxoanion-organometallic complexes deserve mention in this regard: (a) Chae, H. K.; Klemperer, W. G.; Day, V. W. *Inorg. Chem.* **1989,28, 1423. (b)** Day, V. W.; Klemperer, W. G.; Yagasaki, A. *Chem.* Lett.1990, **1267.** *(c)* Day, V. W.; Klemperer, W. G.; Main, D. J. *Inorg. Chem.* **1990,29,2345. (a)** Klemperer, W. G.; Main, D. J. *Inorg. Chem.* **1990, 29, 2355. (e)** See also ref **2.**

⁽⁹⁾ Mizuno, N.; Lyon, D. K.; Finke, R. G. *J. Catal.* **1991, 128, 84.**

⁽¹⁰⁾ For this reason, Pope and co-worker's recent report of A- α - and A- β -
SiW₉M₃(H₂O)₃O₃₇ⁿ- [M = Al¹¹¹, Ga^{II1}, Cr^{III}, Mn¹¹, Fe^{III}, Co^{II}, Ni^{II}, and
Cu¹¹ (but not Zn²⁺)^{11e}] is noteworth

Trans. 1992, 1901.

(11) (a) Finke, R. G.; Rapko, B.; Weakley, T. J. R. *Inorg. Chem.* 1989, 28,

1573. (b) Another case in point is our finding (see Pope's related work¹¹⁰)

that attempts to trisubstitute either PW₉O leads to only di-Zn²⁺-substituted dimers, P₂W₁₈Zn₄O₆₈¹⁰⁻ and P₄W₃₀Zn₄O₁₁₂¹⁶⁻: Finke, R. G; Droege, M. W.; Domaille, P. J. *Inorg. Chem.* **1987**, 26, 3886 and references therein. (c) Pope and co-worker find similarly that they cannot tri-Zn²⁺-substitute SiW₉O₃₄¹⁰⁻ (see ref **10).**

provide another example demonstrating that the synthesis of lowervalent-metal trisubstituted Keggin or Wells-Dawson polyoxoanions can be problematic.

Metal ionic-size considerations are always crucial, but in the case of Ti^{IV} they suggest the ready replacement of W^{V1} (the ionic radius of TilV of **0.745 A** is very close to that of Wvt, **0.74** A12). Consistent with this, several *mono-* and di-titanium-substituted Keggin polyoxoanions13 have been reported in the literature, notably $PW_{11}(TiCp)O_{39}^{4-14}PW_{11}TiO_{40}^{5-15}$ and $PW_{10}Ti_{2}O_{40}^{7-16}$ However, neither tri- or higher Ti^{IV}-substituted polyoxoanions nor an X-ray crystallographic structural investigation of the $A - \beta$ - $X_2M_{18}M'_{6}O_{77}$ ^{*} structural type had been reported until our disclosure of the present work.¹⁷ The very recent report by Yamase and co-workers of a different composition, but structurally closely related, complex $A-\alpha$ -Ge₂W₁₈Ti₆O₇₇¹⁴⁻ is, however, noteworthy in this context.18

Besides their fundamental significance as new types of polyoxometalates, titanium (and titanium-peroxo19) substituted polyoxoanions are also of interest as potential catalysts in photooxidations²⁰ and alkene epoxidations,²¹ especially in light of recent findings employing Ti-containing zeolites²² plus H_2O_2 as organic oxidation catalysts. Titanium-substituted polyoxometalates have also been explored as antiviral agents by Yamase and co-workers.23

Herein, we report the synthesis and unequivocal characterization of A- β -Si₂W₁₈Ti₆O₇₇¹⁴⁻. A single-crystal X-ray crystallographic structural analysis reveals that two $A - \beta - SiW_9$ -

- MA, 1983; p 92.
(13) Some interesting polyoxotitanium oxoalkoxides formed by Ti^{IV} hydrolysis (1 3) Some interesting polyoxotitanium oxoalkoxides formed by TitV hydrolysis have been described in what promises **to** be another interesting subarea of polyoxoanion chemistry: (a) Day, V. W.; Eberspacher, T. A,; Klemperer, W. G.; Park, C. W.; Rosenberg, F. *S. J. Am. Chem.* **Soc.** 1991, 113, 8190. (b) Schmid, R.; Mosset, A.; Galy, J. J. Chem. *Soc., Dalton Trans.1991,* 1999.
- (14) Ho, R. K. C.; Klemperer, W. G. *J. Am. Chem. SOC.* 1978,100,6772. (15) (a) Tournt, C. *C.* R. *Hebd. Seances Acad. Sci., Ser. C* 1968,266,702.
- (b) Tournt, C.; Tournt, G. Bull. *SOC. Chim. Fr.* 1969,1124. (c) Ho, R. K. C. Ph.D. Thesis, Columbia University, 1979. (d) Knoth, W. H.; Domaille, P. J.; Roc, D. C. *Inorg. Chem.* 1983, 22, 198.
- (16) (a) Domaille,P. J.;Knoth, W. H. *Inorg. Chem.* 1983,22,818. (b) **Ozeki,** T.; Yamase, T. *Acta Crystallogr.. Sect. C* 1991, 47, 693.
- (17) Finke, R. G. Reported at the International Workshop 'Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity", July 1992, Bielefeld, Germany.
- (18) At the Bielefeld meeting, directly following our presentation¹⁷ of the work herein, Professor Yamase brought to our attention work in his own laboratories on $Ge_2W_{18}Ti_6O_{77}^{14}$, results which have since been published: Yamase, T.; **Ozeki,** T.; Sakamoto, H.; Nishiya, **S.;** Yamamoto, A. Bull. *Chem. Soc. Jpn.* 1993,66,103 **(see** footnote 15). It is a pleasure **to** acknowledge Professor Yamase for the exchange of unpublished information.
- (19) Yamase, T.; Ozeki, T.; Motomura, *S.* Bull. Chem. *SOC. Jpn.* 1992,65, 1453.
- (20) *Set,* for example: (a) Yamase, T. J. Chem. *Soc., Dalton* Trans.1991, 3055. (b) Chambers, R. C.; Hill, C. L. *Inorg. Chem.* 1991, 30, 2776. (c) Renneke, **R.** F.; Hill, C. L. *J. Am.* Chem. *SOC.* 1988,110,5461. (d) Fox, M. A.; Cardona, **R.;** Gaillard, E. *J. Am. Chem.* **Soc.** 1987, 109, 6347. (e) Nomiya, K.; Miyazaki, T.; Macda, K.; Miwa, M. *Inora. Chim.* - *Acta.* 1987, 127, 65.
- See, for example: (a) Droege, M. W.; Finke, R. G. J. Mol. Catal. 1991, 69, 323. (b) Aubry, C.; Chottard, G.; Platzer, N.; Brégeault, J.-M.;
Thouvenot, R.; Chauveau, F.; Huet, C.; Ledon, H. *Inorg. Chem.* 1991, 3.
J0, 4409. 57, L1. (d) Venturello, C.; D'Aloisio, R.; Bart, J. C. J.; Ricci, M. J. Mol. *Catal.* 1985, 32, 107.
- (a) Romano, U.; Esposito, A.; Maspero, **F.;** Neri, C.; Clerici, M. G. In *New Developments in Selective Oxidation;* Centi, G., Trifiro, F.; **Eds.;** Elsevier: Amsterdam, 199kp33. (b) Huybrechts,D. **R.** C.; **De** Bruycker, L.; Jacobs, P. A. *Nature* 1990,345,240. (c) Clerici, M. G.; Bellussi, G.; Romano, **U.** *J. Catal.* 1991,129, 159. (d) Thangaraj, A.; Kumar, R.; Mirajkar, **S.** P.; Ratnasamy, P. *J. Caral.* 1991,130, 1. (e) Bellussi, G.; Carati, A.; Clerici, M. G.; Maddinelli, G.; Millini, R. *J. Catal.* 1992, 133,220. **(f)** Camblor, M. A.; Corma, A.; Martlnez, A,; Perez-Pariente, J. *J. Chem.* **Soc.,** *Chem. Commun.* **1992,** 589. (g) Reddy, J. **S.;** Khire, **U.** R.; Ratnasamy, P.; Mitra, R. B. *J. Chem. SOC., Chem. Commun.*
- **¹⁹⁹²**_-__. **1334** --- .. (23) (a) Take, Y.; Tokutake, Y.; Inoue, Y.; Yoshida, T.; Yamamoto, A.; Yamase, T.; Nakamura, *S. Antiviral* Res. 1991,15, 113. (b) Fukuma, M.; Seto, Y.; Yamase, T. *Antiviral* Res. 1991, 16, 327.

 $Ti₃O₄₀$ ¹⁰⁻Keggin units have been fused via three Ti-O-Ti bridging oxygens to yield $\left[\text{SiW}_9\text{O}_{37}\right)_2\left(\text{Ti}-\text{O}-\text{Ti}\right)_3\right]$ ¹⁴ (the other three O²⁻ are lost as **H20** following the addition of *6* H+). As such, $Si₂W₁₈Ti₆O₇₇$ ¹⁴⁻ is only the second structurally characterized example (and only the third member) of the little studied subclass^{7a,17,18} of A-X₂M₁₈M'₆O₇₇^{n} type polyoxometalates.

Experimental Section

Materials. All compounds were of reagent grade and were used as received unless indicated otherwise: $K_2Ti(O)(C_2O_4)_2.2H_2O$ (Alfa; it was recrystallized before use from a 1% aqueous solution of $K_2C_2O_4$); Ti(O)(SO₄)-0.6H₂SO₄-1.2H₂O (Aldrich; Lot No. 10521KX), Na₂WO₄ (Spectrum); Bu4NBr **(Fluka);** KCl, LiC104, MczSO, CH3CN (all from Baker); and Me₂SO- d_6 (Cambridge Isotope Laboratories). A- β -Na₉-HSiW₉O₃₄.23H₂O was synthesized according to our procedure,⁴ a slightly modified version of the original work of Hervé and Tézé,²⁴ and its purity was checked by IR spectroscopy in comparison to the literature.^{4,24}

Instrumentation and Analytical Procedures. IR spectra were recorded as KBr disks using a Nicolet 5DX spectrometer. ¹⁸³W NMR spectra were obtained using 10-mm-o.d. sample tubes on a Nicolet NT 360 NMR at 21 °C unless otherwise noted. Chemical shifts are reported in parts per million with negative values upfield of the standard (saturated $Na₂WO₄/D₂O$. Spectral parameters include the following: pulse width $= 70 \mu s$; acquisition time $= 819.4 \text{ ms}$; delay time $= 1 \text{ s}$; sweep width $=$ $±2500$ Hz; and a 1-Hz exponential apodization of the FID. (This added line-broadening has been removed from any line widths reported.) Solution molecular weights were measured by the ultracentrifuge sedimentation-equilibrium method.^{4,25} Thermal gravimetric analysis (TGA) was performed using a **Du** Pont Instruments 951 thermogravimetric analyzer interfaced to a computer. Elemental analyses were obtained from Mikroanalytisches Labor Pascher, Remagen, Germany.

Preparation of K₁₂H₂Si₂W₁₈Ti₆O₇₇.25H₂O. Nine grams (25.0 mmol) of $K_2Ti(O)(C_2O_4)_2.2H_2O$ was dissolved in 400 mL of water in a beaker to give a clear, pH 4.0 solution. Next, 14 mL of 6 M HCl was added, yielding a pH of 0.7. To the rapidly stirred solution 24.0 g (8.4 mmol) of A- β -Na₉HSiW₉O₃₄-23H₂O, was added slowly in small portions and the reaction mixture was stirred for an additional 15 min (the resultant pH was 1.4). The crude product was precipitated by the addition of excess (40 g, 53.6 mmol) KCl and collected on a glass frit. Recrystallization from hot H_2O followed by drying in the air overnight gave 2 g (8.1%) of pure crystalline material. (The low yield is partially due to the high solubility of the K+ salt, which cannot **be** fully recovered by KCI precipitation since, along with the desired $K_{12}H_2Si_2W_{18}Ti_6O_{77}$ crystals, large amounts of $K_2Ti(O)(C_2O_4)_2$ crystals form from the K⁺-saturated reaction solution after several hours.)

Anal. Calcd for $K_{12}H_2Si_2W_{18}Ti_6O_{77}$ 25H₂O: Si, 0.97; W, 56.99; Ti, **4.95;K,8.08;H,0.90;0,28.ll;total,** 100.0. Found: Si,0.94;W,57.0; Ti, 4.83; K, 7.79; H, 0.95; O, 27.4; total, 98.9. TGA (up to 250 °C): calcd for 25 H₂O, 7.75%; found, 7.18%. IR (cm⁻¹, KBr disk, polyoxoanion region): 997 (m), 955(m), 899 (s), 800-720(s, br). ¹⁸³W NMR (0.1 M in D₂O, pH 3.2, as the Li⁺ salt following metathesis with excess LiClO₄ and removal of the insoluble KClO₄): -131.3 (6W, $\Delta \nu_{1/2} = 1.0 \pm 0.1$ Hz), -145.8 ppm (12W, $\Delta v_{1/2} = 1.2 \pm 0.1$ Hz); $^2J_{W-Q-W} = 15.5$ Hz. Ultracentrifugation solution molecular weight determination (1×10^{-5}) M in 0.1 M LiCl/H₂O; pH 3.1; partial molar volume $0.2 \text{ cm}^3 \text{-} \text{g}^{-1}$): calcd for $Si_2W_{18}Ti_6O_{77}^{14}$, 4885; found, 4500 \pm 500.

Preparation of $(Bu_4N)_{7,5}H_{4,5}Si_2W_{18}Ti_4O_{77}$ **.** Nine grams (25.0 mmol) of $K_2Ti(O)(C_2O_4)_2.2H_2O$ was dissolved in 400 mL of water to give a clear, pH 4.0 solution. To the rapidly stirred solution was added slowly in small portions 24.0 g (8.4 mmol) of A - β -Na₉HSiW₉O₃₄-23H₂O. The reaction mixture was stirred for an additional 15 min (the resultant pH was 4.6), and the crude product was precipitated by addition of excess $(56 g, 173.6 mmol)$ Bu₄NBr. The precipitate was collected on a medium frit, washed with H₂O (ca. 1000 mL), and dried at 50 $^{\circ}$ C to yield 3 g of white solid. Recrystallization was achieved by vapor diffusion of acetone into a near-saturated CH₃CN solution of the crude product. Several days later, colorless crystals were collected on a glass frit and dried at 50 °C under vacuum overnight, to give 5-6 g (17-21%) of pure material.

^(1 2) Porterfield, W. W. *Inorganic Chemistry;* Addison-Wesley: Reading,

^{(24) (}a) Hervt, G; Ttzt, A. *Inorg.* Chem. 1977, 16, 2115. (b) **Robert,** F.; TCzt, A. *Acta Crystallogr., Sect. B* 1981,37, 318. (c) Ttzt, A.; Hervt, G. *Inorg. Synth.* **1990,** 27, 88.

^{(25) (}a) Chervenka, C. **H.** *A Manual of Methods for the Analytical Ultracentrvuge;* Spinco Division of Beckman Instruments: Palo Alto, CA, 1969. (b) Fujita, H. *Foundations of Ultracentrlfugal Analysis;* Wiley: New York, 1975; pp 308-313.

Anal. Calcd for $(Bu_4N)_{7.5}H_6$, $Si_2W_{18}Ti_6O_{77}$: C, 21.48; H, 4.06; N, 1.57; Si, **0.84; W,** 49.32; Ti, 4.28; 0, 18.36; total, 100.0. Found: C, 21.72; H, 4.24; N, 1.74; Si, 0.88; W, 49.5; Ti, 4.05; 0, 18.0; total, 100.1 .TGA showed the absence of lattice solvent in the vacuum-dried product. IR (cm-1, KBr disk, polyoxoanion region): 997 (m), 963(m), 899 (s), 815(s), 702 (s, br). ¹⁸³W NMR (0.1 M in 1:1 Me₂SO-d₆/Me₂-**SO-d₀**, 21 °C): -127.7 (6W, $\Delta v_{1/2} = 33.8 \pm 0.6$ Hz), -155.8 ppm (12W, $\Delta v_{1/2}$ = 40.0 \pm 0.5 Hz). Such broad ¹⁸³W NMR peaks for basic polyoxoanions in "dry" solvents are well-understood and are due to slow proton-exchange (slow tautomerization) processes on the surface oxygens of the polyoxoanion.^{4,26} Confirming this, the ¹⁸³W NMR peaks sharpened either following the diagnostic4 addition of small amounts of water or in spectra collected at higher temperature as detailed below. 183W NMR $(0.1 \text{ M in } 1:1 \text{ Me}_2\text{SO-}d_6/\text{Me}_2\text{SO-}d_0$, with the addition of three drops of H_2O , 21 °C): -123.1 ($\Delta \nu_{1/2}$ = 22.0 \pm 0.4 Hz), -151.0 ppm ($\Delta \nu_{1/2}$ = 21.5 \pm 0.5 Hz). ¹⁸³W NMR (the same "dry" sample run above at 21 °C except now at 50 °C): -120.3 ppm ($\Delta \nu_{1/2}$ = 22.9 \pm 0.5 Hz), -148.1 ppm $(\Delta v_{1/2} = 23.7 \pm 0.4 \text{ Hz})$. Ultracentrifugation solution molecular weight determination (1 × 10⁻⁵ M in 0.1 M Bu₄NPF₆/CH₃CN; partial molar volume 0.35 cm³·g⁻¹): calcd for $(Bu_4N)_2Si_2W_{18}Ti_6O_{77}^{12}$, 5369; found, 5300 **2500**.

Yield **Optimization Experiments.** In a series of five experiments designed to improve the modest ≤21% yield of the above syntheses of $Si₂W₁₈T₁₆O₇₇$ ¹⁴, the yield was determined as a function of the following three variables: the pH, the amount of TiO^{2+} (i.e. relative to $SiW_9O_{34}^{10-}$), and the Ti^{IV} source $[K_2Ti(O)(C_2O_4)_2$ or $Ti(O)(SO_4)$. The details of these five experiments are reported in the supplementary materials, along with a table and additional discussion of the results. Only experiment **V,** the most successful of the five experiments which resulted in a doubling of the yield to ca. 41% is detailed below.

In experiment V, Ti(O)(SO₄).0.6H₂SO₄.1.2H₂O was used instead of $K_2Ti(O)(C_2O_4)_2$. Thus, 3.5 g of $Ti(O)(SO_4)\cdot 0.6H_2SO_4\cdot 1.2H_2O$ (14.5) mmol; 6.9 equiv vs $\text{SiW}_9\text{O}_{34}^{10}$) was dissolved in 100 mL of water by stirring for **0.5** h at room temperature to give a slightly turbid, pH 1.0 solution. (Heating should be avoided as, otherwise, a precipitate forms.) To this solution was added slowly in small portions 6.0 g (2.1 mmol) of $A - \beta - N a_9 H SiW_9O_{34} - 23H_2O$, and the reaction mixture was stirred for an additional 20 min. Next, 10 g (134 mmol) of KCl was added, the precipitate was collected on a frit, and the clear filtrate was placed in a refrigerator overnight, from which needlelike crystals were formed and collected the next morning (1.8 g, after air drying). The precipitate was recrystallized to give 0.7 g of crystalline material, for a total yield of 2.5 g (41%). The purity of the both crops was checked by both IR and Is3W NMR spectroscopy. It is worth noting that the mixed K^+/H^+ salt is quite soluble in water and, therefore, it is probable that the yield can be improved further if desired (e.g. by the use of less solvent or different or mixed countercations) .

X-ray Structural Analysis **(Tetrabutylammonim Wt).** Colorless tablet-shaped crystals up to **0.5** mm in length were grown from an acetonitrile/acetone mixture, manipulated under Apiezon grease (to prevent loss of solvent of crystallization), and sealed in glass capillaries. The diffraction profiles of the majority of crystals examined on the Rigaku AFC6R diffractometer were broad and weak and exhibited high backgrounds. Eventually, an adequate crystal with approximate dimensions $0.20 \times 0.25 \times 0.30$ mm³ was obtained which exhibited sharp, although still weak, diffraction peaks. The orientation matrix and cell dimensions were obtained from the setting angles of 25 centered reflections in the 2θ range 10.7-13.3°. Measurement of the intensities of reflections equivalent to these 25 confirmed that the Laue symmetry was *mmm.* A summary of crystal data including the final residuals is given in Table I. A complete table provided in the supplementary material contains details of the data collection and structure refinement. The incidence of observed reflections $[I \geq 3\sigma(I)]$ fell from *ca*. 85% at low θ to *ca*. 15% near θ = 40°, at which point data collection was halted. Altogether, 4614 (43%) out of 10 846 independent reflections were observed.

The systematic absences and centric distribution of intensities gave the space group unambiguously as *Pbcm*. An E map (SHELXS²⁷) showed the 10 independent W atoms as the 10 strongest peaks, with weaker indicationsof the Ti and Si atoms. Theoxygen atoms werelocated

Table I. Crystallographic Data

compn	$C_{112}H_{259}N_{7}$	d_{calc}	2.093 g cm ⁻³
	$O_{77}Si_{2}Ti_{6}W_{18}$		
fw	6589.2		25 °C
space group	Pbcm		0.71069 Å
a	19.958(11) A	и	101.9 cm ⁻¹
b	$36.880(8)$ Å	rel transm coefft	$0.32 - 1.00$ (ψ)
c	$28.936(5)$ Å	No. of obsd rflns	4614 $[I \geq 3\sigma(I)]$
V	21298(20) Å ³	$R(F)^a$	0.072
z		$R_{\rm w}(F)^b$	0.095
		$^a R(F) = \sum F_{\rm o} - F_{\rm o} / \sum F_{\rm o} ^b R_{\rm w}(F) = \sum W(F_{\rm o} - F_{\rm c})^2 / \sum W F_{\rm o} ^2 ^{1/2}.$	

from difference syntheses. An empirical absorption correction (DI-FABS2*) based on the isotropically-refined structure was applied. Subsequently the W and Ti atoms were refined anisotropically. A difference synthesis at $R = 0.085$ then clearly showed fragments of five independent cations, a total of seven per anion. Attempts to refine the carbon and nitrogen atoms, with various combinations of site occupancy factors, lowered the residual $(R = 0.072, N/V = 4614/409)$ but also led to several very large thermal parameters and to many improbably long or short **C-C** and C-N bonds. Accordingly, the C and N atoms were constrained at their original positions with *B* values arbitrarily set at 6 $\mathbf{\hat{A}}^2$ for N and 8, 10, 12, and 14 $\mathbf{\hat{A}}^2$ for α , β , γ , and δ C atoms, respectively. The same residual, $R = 0.072$ $(N/V = 4614/290)$, was attained as when no constraints were applied. The final difference synthesis showed peaks of up to 1.6 e \mathring{A}^{-3} in the interanion voids; these may have represented atoms of other, disordered cations or of solvent molecules, but the inclusion of these in the model seemed unlikely to improve the resolution of the structure of the anion, the matter of greatest interest. The TEXSANprogram suite,²⁹ incorporating standard atomic scattering factors,³⁰ was used in all calculations.

Results and Discussions

Synthesis. The reaction of A- β -HSiW₉O₃₄⁹⁻ with the Ti(O)²⁺ sources $Ti(O)(C_2O_4)_2^{2-}$ or $Ti(O)SO_4$ at pH *ca.* 1–4 provides the new Ti^{IV}-substituted polyoxometalate $Si₂W₁₈Ti₆O₇₇^{14–}$, which can be readily isolated in pure form as either its water-soluble **K+** salt or its organic-solvent-soluble Bu_4N^+ salt. In the case of the Bu_4N^+ salt, the analysis best fits a $(Bu_4N)_{7.5}H_{6.5}Si_2W_{18}Ti_6O_{77}$ fractionalcation formulation (these are common in our experience^{30,4,31} and reflect, presumably, a 1:1 mixture of the $(Bu_4N)_8H_6^{14+}$ and $(Bu_4N)_7H_7^{14+}$ salts).

Although the initial synthesis provides adequate amounts of material for most studies, optimization experiments were undertaken to improve the initial \leq 21% yield. Since virtually nothing is known in detail about the mechanisms of formation of such polyoxoanions (other than they can be viewed as a series of 2 M -OH to M -O-M + H_2O condensation reactions; see the further mechanistic discussion presented later in eqs $1-3$), one is left to "intuitive prospecting" to try to improve such polyoxoanion syntheses. In the present case, the most obvious variables were changed in a series of five experiments designed to improve the yield; specifically, the reaction pH, the quantity of $TiO²⁺$ relative to SiW₉O₃₄¹⁰, and the TiO²⁺ source of each were varied. The most successful of these five experiments, the use of a 2-fold excess (i.e. over the stoichiometrically required 3.0 equiv) of Ti- **(0)S04** as the Ti0*+ source, followed by isolation of the mixed $K_{12}H_2^{14+}$ salt of $Si_2W_{18}Ti_6O_{77}^{14-}$, resulted in a 41% yield, a more than 2-fold increase in the yield. (Details of these experiments,

⁽²⁶⁾ Day, V. W.; Klempercr, W. G.; Maltbie, D. J. *J. Am. Chem. Soc.* **1987,** *109,* 299 1. (27) Sheldrick, G. M. In *Crystallographic Computing* 3; Sheldrick, *G.* M.,

Kruger, *C.,* Goddard, R. **Eds.;** Oxford University Press: Oxford, U.K., 1985; pp 175-189.

Walker, N.; Stuart, D. Acta *Crystallogr., Sect. A* **1983,** *39,* 158. *TEXSAN: Texray Program for Structure Analysis,* version 5.0;

Molecular Structure Corp.: 3200A Research Forest Dr., The Woodlands, TX 77381, 1989. Cromer, D. T.; Waber, J. T. In *International Tables for X-Ray*

Crystallography; Kynoch **Press:** Birmingham, U.K., 1974; Vol. IV, pp 71, 148.

⁽a) Weakley, T. J. R.; Finke, R. G. *Inorg. Chem.* **1990,29,** 1235. (b) (31) If desired, a single cation composition can probably be prepared by Droege's procedure^{7n,46} for preparing $(Bu_4N)_6H_2[A\text{-}f_3S_1N_{18}Nb_6O_{77}]$ (i.e. by adding an aqueous acid solution such as aqueous HCl to an acetonitrile solution of the mixed salt $(Bu_4N)_{7.5}H_6$, $Si_2W_{18}Ti_6O_{77}$ to reprecipitate it, followed by recrystallization to yield the $(Bu_4N)_{7-x}H_{7+x}$ ¹⁴⁺ salt, where x would depend upon the pK_a of the acid used).

Figure 1. Structure of A- β -Si₂W₁₈Ti₆O₇₇¹⁴.

a table of conditions and yields, and additional discussion of the results are available as supplementary material.)

X-ray Single-Crystal Structure Analysis of the Bu₄N⁺ Salt. The structure and a stereoview of $Si₂W₁₈Ti₆O₇₇¹⁴⁻$ are shown in Figures 1 and 2, respectively. The anion contains two "SiW₉Ti₃O₄₀" Keggin anion halves linked via three Ti-O-Ti bonds, with each half having the same A- β structure as the precursor, A- β - $\text{SiW}_9\text{O}_{34}^{10-}$. As expected, the three TiO₆ octahedra in each "SiW₉- $Ti₃$ " Keggin unit replace the three corner-sharing $WO₆$ octahedra missing from the trivacant lacunary precursor ion, A- β -SiW₉O₃₄¹⁰⁻ (i.e. missing in relation to $A - \beta - SiW_{12}O_{40}^{4-}$). Atomic coordinates are given in Table **11,** and derived bond lengths for the anion are given in Table **111.** Although the resolution obtained for the structure of the salt has been limited by the poor quality of the available crystals (even after more than a dozen trials to obtain better crystals) and by the considerable disorder of the cations and the solvent of crystallization (features all too common in polyoxoanion crystallography32), the main features of the structure of the anion are fortunately still quite clear. Bond lengths around Ti (esd $0.03-0.05$ Å): Ti-O-Ti (between monomer units) 1.79-1.83, average 1.81 **A;** other Ti-0-Ti 1.90-1.98, average 1.94 Å; Ti-O (W), 1.82-2.02, average 1.93 Å; Ti-O (Si, W) 2.12-2.24, average 2.21 **A;** see also Table **111.** The corresponding bond valences3' at the Ti atoms, based **on** averaged bond lengths: $1.00(8)$, $0.71(6)$ (twice), $0.73(6)$ (twice), and $0.34(3)$, summing to 4.2(2) (note that the calculated bond valences for the shorter bonds are particularly sensitive to errors in bond length). The Ti-O-Ti angles between β -Keggin units are all 141(3)° (sup-

(33) Brown, I. D.; Altermatt, D. *Acra* Crystallogr., *Secr. B* **1985,** *41,* 244.

Figure 2. Stereoview of A- β -Si₂W₁₈Ti₆O₇₇¹⁴.

plementary material, Table D). Overall, the general structure of A- β -Si₂W₁₈Ti₆O₇₇¹⁴⁻ is quite similar (but not identical³⁴) to that which Yamase recently reported for $A-\alpha-Ge_2W_{18}Ti_6O_{77}^{14}$.¹⁸

The structure of $A - \beta - Si_2W_{18}Ti_6O_{77}^{14-}$ provides an interesting contrast with that of A- β -Si₂W₁₈Zr₃O₇₁¹⁴, in which the larger Zr atoms, in capped trigonal-prismatic $(6 + 2)$ coordination, are symmetrically shared between the two SiW₉ units.^{11a} The W--W distances in $Si₂W₁₈Ti₆O₇₇¹⁺$ (Table IV) are similar to corresponding distances in $Si₂W₁₈Zr₃O₇₁¹⁴$. The crystallographically determined structure for $Si₂W₁₈Ti₆O₇₇¹⁴⁻$ is the same as that deduced,^{7a,35} on the basis of synthesis and ¹⁸³W NMR, IR, and FAB-MS spectra (and in the absence of suitably diffracting single crystals³⁶), for $Si₂W₁₈Nb₆O₇₇⁸⁻$, the first member of the $X_2M_{18}M'_{6}O_{77}$ series of polyoxometalates.

Structural Characterization of Si₂W₁₈Ti₆O₇₇⁸⁻ in Solution. Ultracentrifugation solution molecular weight measurements, of both the K⁺ salt in aqueous solution and the Bu₄N⁺ salt in CH₃-CN solution, indicate that the $Si₂W₁₈T₄O₇₇¹⁴$ structure is retained in both aqueous and nonaqueous solutions. The 183W NMR spectrum of $Si₂W₁₈Ti₆O₇₇¹⁴$ in aqueous solution (Figure 3), gives two clean peaks with relative intensity of 1:2 and $2J_{W-Q-W}$ of 15.5 Hz, indicating that the A-type³⁷ structure of the SiW₉O₃₄⁷-starting material is fully retained in solution. It is interesting to note that the peak pattern of the ¹⁸³W NMR spectrum (i.e. the fact that the six belt tungstens appear *upfield* of the three cap tungstens) is the same as that of $Si_2W_{18}Zr_3O_{71}^{14-11a}$ and $Si_2W_{18}Nb_6O_{77}^{8-7a}$ but the opposite of that of Yamases¹⁸ Ge₂W₁₈Ti₆O₇₇¹⁴ or Pope's¹⁰ $\text{SiW}_9[\text{M}(H_2O)]_3O_{37}$ ⁿ⁻ (i.e. where the six belt tungstens now appear *downfield* of the three cap tungstens). However, a careful examination of the available trisubstituted polyoxoanion (and relevant reference polyoxoanion) ¹⁸³W NMR chemical shift data

⁽³²⁾ A more detailed discussion of the general problem of disordered cations and solvent molecules in crystals of heteropolyanion salts is available elsewhere for the interested reader.^{31a}

⁽³⁴⁾ In particular, the six Ti atoms in A- α -Ge₂W₁₈Ti₆O₇₇¹⁴ play the same structural role (bridging Ti-O-Ti) and have the same distorted-octahedral coordination geometry¹⁸ as in A- β -Si₂W₁₈T₁₆O₇₇¹⁴. One difference between the two structures is that the Ti-O-Ti angles between the two Keggin anion halves are slightly larger in A- β -Si₂W₁₈Ti₆O₇₇¹⁴ [all are 141(3)° compared with 132-136 (2)° in A- α -Ge₂W₁₈Ti₆O₇₇¹⁴⁻]. Other small differences in corresponding dimensions are ascribable to the smaller size of Si compared with Ge and to the different orientation $(\alpha \text{ vs } \beta)$ of the **W,** cap.

Suslick, K. **S.;** Cook, J. C.; Rapko, B.; Droege, M. W.; Finke, **R.** G. *Inorg. Chem.* **1986,** 25,241.

Crystals of $(Bu_4N)_6H_2(Su_4N_{18}N_{16}O_{77})$, grown by vapor diffusion or slow cooling from various combinations of Me₂SO or MeCN and the (36) less polar 1,2-dihydroxyethane or toluene, were sealed in capillaries and examined on the diffractometer but never proved suitable for data collection. In general, their diffraction **peaks** were broad and weak with high backgrounds and exhibited a marked decrease in average intensity
at higher scattering angles. The crystal system and the unit cells proved sensitive to the conditions of crystallization: the largest unit cell was 42 000 Å³, at least when one could be obtained from 25 reflections located by the diffractometer. One crystal from a MeCN/toluene mixture was orthorhombic, with $a = 20.217(6)$ Å, $b = 36.696(6)$ Å, $c = 28.297(8)$ Å, and $V = 20993$ Å³, and thus possibly isomorphous with the present compound.

Lefebvre, J.; Chauveau, F.; Doppelt, **P.** *J. Am. Chem.* **Soc. 1981,103,** 4589.

Tabk II. Atomic Coordinates and Isotropic (Si, *0,* C, N) or Equivalent Isotropic (W, Ti) Thermal Parameters **(A2)** (Parameters for Carbon and Nitrogen Atoms Not Refined)

atom	x	y	\pmb{z}	$B_{\infty}^{\ \ a}$	atom	x	\mathcal{Y}	z	B_{eq}^{a}
W(1)	0.58261(20)	0.31353(11)	0.25000	4.4(3)	O(39)	0.0043(20)	0.5959(11)	0.2023(15)	6.0(12)
W(2)	0.47688(15)	0.25988(7)	0.19211(12)	4.6(2)	O(40)	0.2504(21)	0.3665(11)	0.2500	1.3(11)
W(3)	0.29736(14)	0.28195(7)	0.18464(11)	4.0(2)	O(41)	0.2066(16)	0.3980(9)	0.1678(12)	2.8(9)
W(4)	0.40230(14)	0.33577(7)	0.12744(10)	3.6(2)	O(42)	0.3359(16)	0.4106(9)	0.2030(13)	3.2(9)
W(5)	0.51996(12)	0.39705(7)	0.19265(10)	3.3(2)	O(43)	0.1480(21)	0.4222(11)	0.2500	1.3(111)
W(6)	0.22014(13)	0.56628(6)	0.19268(10)	3.0(1)	O(44)	0.2358(15)	0.4664(8)	0.2040(11)	1.7(8)
W(7)	0.10228(14)	0.50536(7)	0.12762(10)	3.2(2)	O(45)	0.3547(26)	0.4745(13)	0.2500	3.7(14)
W(8)	$-0.00097(13)$	0.45081(7)	0.18491(10)	3.3(2)	O(46)	0.4612(27)	0.3034(14)	0.2500	4.0(14)
W(9)	$-0.03466(14)$	0.54910(8)	0.19204(12)	4.7(2)	N(1)	0.4717	0.2500	0.5000	6.0
W(10)	0.07013(22)	0.60388(11)	0.25000	4.3(3)	N(2)	0.3676	0.0122	0.5723	6.0
Ti(1)	0.2788(4)	0.3704(2)	0.1850(03)	1.1(5)	N(3)	0.7792	0.0991	0.7500	6.0
Ti(2)	0.3928(6)	0.4293(3)	0.2500	1.6(8)	N(4)	0.6849	0.1874	0.2500	8.0
Ti(3)	0.1606(4)	0.4374(2)	0.1851(03)	0.9(5)	N(5) ^b	0.2394	0.1755	0.2500	8.0
Ti(4)	0.2743(6)	0.4966(3)	0.2500	1.1(7)	N(6) ^b	1.0007	0.0705	0.5114	6.0
Si(1)	0.4093(13)	0.3363(7)	0.2500	3.3(6)	C(1)	0.4310	0.2402	0.4584	8.0
Si(2)	0.1048(13)	0.5082(7)	0.2500	3.5(7)	C(2)	0.4130	0.2093	0.4661	10.0
O(1)	0.6680(33)	0.3120(17)	0.2500	7.5(20)	C(3)	0.3558	0.1926	0.4245	12.0
O(2)	0.4952(22)	0.2245(11)	0.1560(16)	6.8(13)	C(4)	0.5145	0.2327	0.5125	8.0
O(3)	0.2501(17)	0.2440(10)	0.1669(13)	3.8(10)	C(5)	0.5672	0.2198	0.5385	10.0
O(4)	0.4247(20)	0.3361(10)	0.0684(15)	5.1(11)	C(6)	0.6018	0.1865	0.5663	12.0
O(5)	0.5770(19)	0.4154(10)	0.1532(14)	4.7(10)	C(7)	0.3197	0.0446	0.5790	8.0
O(6)	0.2554(20)	0.5953(10)	0.1522(15)	5.6(12)	C(8)	0.2875	0.0623	0.5351	10.0
O(7)	0.1031(17)	0.5188(9)	0.0711(13)	3.5(9)	C(9)	0.2351	0.0871	0.5418	12.0
O(8)	$-0.0707(19)$	0.4271(10)	0.1659(14)	4.4(10)	C(10)	0.2243	0.1146	0.5017	14.0
O(9)	$-0.1013(21)$	0.5593(11)	0.1537(16)	6.1(12)	C(11)	0.3966	0.0067	0.6248	8.0
O(10)	0.0758(26)	0.6498(14)	0.2500	4.2(14)	C(12)	0.4475	-0.0135	0.6360	10.0
O(11)	0.5647(18)	0.2766(9)	0.2025(14)	4.3(10)	C(13)	0.4569	-0.0323	0.6749	12.0
O(12)	0.5616(18)	0.3504(19)	0.2012(13)	4.2(10)	C(14)	0.5253	-0.0404	0.6850	14.0
O(13)	0.4872(26)	0.2350(14)	0.2500	4.1(14)	C(15)	0.4274	0.0309	0.5559	8.0
O(14)	0.3821(17)	0.2562(9)	0.1970(13)	3.9(9)	C(16)	0.4704	0.0666	0.5703	10.0
O(15)	0.4707(19)	0.2996(10)	0.1507(14)	4.6(10)	C(17)	0.5179	0.0789	0.5254	12.0
O(16)	0.2834(25)	0.2787(13)	0.2500	3.3(13)	C(18)	0.3444	-0.0150	0.5550	8.0
O(17)	0.3437(16)	0.2950(8)	0.1259(12)	2.7(8)	C(19)	0.2844	-0.0405	0.5651	10.0
O(18)	0.2393(16)	0.3210(9)	0.1789(12)	2.9(9)	C(20)	0.2708	-0.0664	0.5352	12.0
O(19)	0.3632(15)	0.3336(8)	0.2024(11)	1.6(7)	C(21)	0.2160	-0.0929	0.5385	14.0
O(20)	0.3268(17)	0.3668(9)	0.1281(13)	3.8(9)	C(22)	0.7344	0.1062	0.6997	8.0
O(21)	0.4482(23)	0.3767(12)	0.2500	2.4(12)	C(23)	0.7620	0.1006	0.6549	10.0
O(22)	0.4621(18)	0.3715(9)	0.1502(13)	3.6(10)	C(24)	0.8456	0.1169	0.7500	8.0
O(23)	0.5639(25)	0.4101(13)	0.2500	3.1(13)	C(25)	0.8440	0.1570	0.7500	10.0
O(24)	0.4622(15)	0.4352(8)	0.1998(12)	2.2(8)	C(26)	0.8005	0.0572	0.7500	8.0
O(25)	0.0955(14)	0.4849(7)	0.2033(11)	1.4(7)	C(27)	0.7529	0.0338	0.7500	10.0
O(26)	0.1823(19)	0.5251(10)	0.2500	0.1(9)	C(28)	0.7891	-0.0086	0.7500	12.0
O(27)	0.1677(19)	0.5365(10)	0.1502(15)	4.9(11)	C(29)	0.7442	-0.0330	0.7500	14.0
O(28)	0.2441(25)	0.5875(13)	0.2500	3.2(13)	$C(30)^b$	0.2935	0.1585	0.2500	8.0
O(29)	0.1311(17)	0.5915(9)	0.2025(13)	3.5(9)	C(31) ^b	0.1651	0.1356	0.2096	10.0
O(30)	0.2875(16)	0.5321(8)	0.2030(12)	2.6(8)	C(32) ^b	0.1767	0.1587	0.2500	8.0
O(31)	0.1536(17)	0.4633(9)	0.1318(13)	3.2(9)	C(33) ^b	0.1608	0.1485	0.2250	10.0
O(32)	0.0389(19)	0.5402(10)	0.1485(14)	4.7(11)	C(34)	0.3624	0.1612	0.2500	10.0
O(33)	0.0267(16)	0.4733(9)	0.1256(12)	2.9(9)	C(35)	0.1672	0.1836	0.2500	8.0
O(34)	$-0.0090(26)$	0.4441(14)	0.2500	4.3(14)	$C(36)^b$	0.7631	0.1786	0.2500	8.0
O(35)	$-0.0430(17)$	0.4992(9)	0.1967(13)	3.4(9)	C(37) ^b	0.7011	0.2256	0.2168	8.0
O(36)	0.0723(15)	0.4179(8)	0.1757(11)	1.8(8)	C(38)	1.0601	0.0575	0.4909	8.0
O(37)	0.0491(23)	0.5410(12)	0.2500	2.3(12)	C(39)	1.0000	0.0989	0.5480	8.0
O(38)	$-0.0830(27)$	0.5525(14)	0.2500	4.4(15)	C(40)	0.9718	0.0842	0.4614	8.0

 $\mathbf{B}_{eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a^*i^*a^*a_{i}$, ^b Site occupancy factor 0.5.

(supplementary material, Table B) fails to reveal an obvious structural or other reason for this (relatively small) peak-pattern difference.

The IR spectra of both the K^+ and Bu_4N^+ salts (Figure 4) show a new, strong band at 700 cm⁻¹ (in addition to the expected bands typical of Keggin-type tungstosilicates³⁸ at ca. 1000, 950, 900, and 800 cm⁻¹). By comparison to $C_5H_5Cl_2Ti-O-TiCl_2C_5H_5$ $(Ti-O-Ti, 720 cm^{-1})^{39}$ and by analogy to the Nb analog $Si₂W₁₈Nb₆O₇₇⁸⁻$ which has a Nb-O-Nb band at 690 cm⁻¹,⁷^a this new-700 cm⁻¹ band is reasonably assigned to the Ti-O-Ti bonds linking the two "SiW₉Ti₃O₄₀" units.

Interestingly, an IR band at ca.700 cm-I is also found by Pope and co-workers in A- β -SiW₉M₃(H₂O)₃O₃₇ⁿ (M = Mn^{III}, Ni^{III},

other metals¹⁰). These workers provided fast atom bombardment mass spectroscopy evidence suggestive of "small to modest" amounts of M-O-M linked "dimer" products.¹⁰ (Polyoxoanion monomer vs dimer distinctions via FAB-MS can be misleading, however, due to dimer formation or cleavage during the FAB desorption process.⁴⁰) Overall, both our and Pope's data suggest that a *strong* IR band⁴¹ in the \sim 700-cm⁻¹ range is one indicator that the $Si₂W₁₈M₆O₇₇$ ⁿ⁻ type structure may be present.

Plausible Mechanism of Formation of $Si_2W_{18}Ti_6O_{77}^{14}$. The mechanisms of formation or degradation of polyoxometalates are a little studied subject, other than a few key papers by Kepert, Kyle, and co-workers.⁴² Cation ion-pairing effects on the highly charged polyoxoanions are also generally important, a conclusion fully supported by Kepert's classic papers (all of which emphasize

^{(38) (}a) Thouvenot, R.; Fournier, M.; Franck, R.; Rocchiccioli-Deltcheff, C. *Inorg. Chem.* 1984, 23, 598. (b) Rocchiccioli-Deltcheff, C.; Fournier, M.; Franck, R.; Thouvenot, R. *Inorg. Chem.* 1983, 22, 207. (39) Giddings, S. A. *Inorg. Chem.* 1964, 3, 684.

⁽⁴⁰⁾ Trovarelli, A.; Finke, R. G. Inorg. *Chcm..* submitted for publication. (41) In the case of the Co^{III} derivative SiW₉C_{O3}O₄₀¹³-only a very weak

⁷⁰⁰⁻cm-band is detected and no dimer could **be** detected by FAB-MS.lO

Table III. Bond Lengths in the Anion (A)

$W(1) - O(1)$	1.71(7)	$W(8)-O(25)$	2.36(3)
$W(1) - O(11)$	1.97(4)	$W(8) - O(33)$	1.99(4)
$W(1) - O(12)$	2.00(4)	$W(8)-O(34)$	1.91(1)
$W(1) - O(46)$	2.45(5)	$W(8)-O(35)$	2.00(3)
$W(2) - O(2)$	1.71(4)	$W(8)-O(36)$	1.92(3)
$W(2) - O(11)$	1.88(4)	$W(9) - O(9)$	1.77(4)
$W(2) - O(13)$	1.92(2)	$W(9) - O(32)$	1.96(4)
$W(2) - O(14)$	1.90(3)	$W(9) - O(35)$	1.85(3)
$W(2) - O(15)$	1.90(4)	$W(9) - O(37)$	2.39(3)
$W(2) - O(46)$	2.34(4)	$W(9)-O(38)$	1.94(3)
$W(3) - O(3)$	1.76(4)	W(9)–O(39)	1.92(4)
$W(3) - O(14)$	1.97(3)	$W(10) - O(10)$	1.70(5)
$W(3) - O(16)$	1.92(1)	$W(10) - O(29)$	1.89(4)
$W(3) - O(17)$	1.99(3)	$W(10) - O(37)$	2.36(5)
$W(3) - O(18)$	1.86(3)	$W(10) - O(39)$	1.93(4)
$W(3) - O(19)$	2.37(3)	$Ti(1) - O(18)$	1.99(3)
$W(4) - O(4)$	1.77(4)	$Ti(1) - O(19)$	2.22(3)
$W(4) - O(15)$	2.02(4)	$Ti(1) - O(20)$	1.91(4)
$W(4) - O(17)$	1.91(3)	$Ti(1) - O(40)$	1.97(2)
$W(4) - O(19)$	2.31(3)	$Ti(1) - O(41)$	1.83(3)
$W(4) - O(20)$	1.89(3)	$Ti(1) - O(42)$	1.94(3)
$W(4) - O(22)$	1.90(4)	$Ti(2) - O(21)$	2.23(5)
$W(5) - O(5)$	1.75(4)	$Ti(2) - O(24)$	2.02(3)
$W(5) - O(12)$	1.93(3)	$Ti(2) - O(42)$	1.90(4)
$W(5)-O(21)$	2.32(3)	$Ti(2) - O(45)$	1.83(5)
$W(5)-O(22)$	1.93(4)	$Ti(3) - O(25)$	2.24(3)
$W(5) - O(23)$	1.94(3)	$Ti(3) - O(31)$	1.82(4)
$W(5) - O(24)$	1.83(3)	$Ti(3) - O(36)$	1.92(3)
$W(6) - O(6)$	1.74(4)	$Ti(3) - O(41)$	1.79(3)
$W(6) - O(26)$	2.37(3)	$Ti(3) - O(43)$	1.98(2)
$W(6) - O(27)$	1.95(4)	$Ti(3)-O(44)$	1.92(3)
$W(6) - O(28)$	1.90(2)	$Ti(4) - O(26)$	2.12(4)
$W(6)-O(29)$	2.03(3)	Ti(4)–O(30)	1.91(3)
$W(6) - O(30)$	1.87(3)	$Ti(4) - O(44)$	1.90(3)
$W(7) - O(7)$	1.71(4)	$Ti(4) - O(45)$	1.80(5)
$W(7) - O(25)$	2.32(3)	$Si(1) - O(19)$	1.66(3)
$W(7) - O(27)$	1.86(4)	$Si(1) - O(21)$	1.68(5)
$W(7) - O(31)$	1.86(3)	$Si(1) - O(46)$	1.59(5)
$W(7) - O(32)$	1.90(4)	$Si(2) - O(25)$	1.61(3)
$W(7) - O(33)$	1.92(3)	$Si(2) - O(26)$	1.67(4)
$W(8)-O(8)$	1.73(4)	$Si(2) - O(37)$	1.64(5)
Table IV.		Distances between W, Ti, and Si Atoms (A) ^a	
$W(1) \cdots W(2)$	3.343(5)	$W(6) \cdots W(6^i)$	3.317(6)
$W(1) \cdots W(5)$	3.715(5)	$W(6) \cdots W(10)$	3.693(5)
$W(2) \cdots W(2^i)$	3.350(7)	$W(6) \cdots W(7)$	3.758(4)
$W(2) \cdots W(3)$	3.680(4)	$W(7)$ $W(8)$	3.323(4)
$W(2) \cdots W(4)$	3.681(4)	$W(7)$ $W(9)$	3.681(4)
$W(3) \cdots W(4)$	3.327(4)	$W(8) \cdots W(9)$	3.693(4)
$W(3) \cdots W(3^i)$	3.783(7)	$W(8)$ $W(8)$	3.767(6)
$W(4) \cdots W(5)$	3.766(4)	W(9)…W(9i)	3.354(7)
$W(5) \cdots W(5)$	3.319(6)	$W(9)$ $W(10)$	3.357(5)
$W(3) \cdot T(i)$	3.283(9)	$W(6)$ Ti (4)	3.24(1)
$W(4) \cdot T(i)$	3.238(9)	$W(7)$ $Ti(3)$	3.225(9)
$W(5) \cdot T(2)$	3.26(1)	$W(8) \cdot T(3)$	3.263(9)
$Ti(1) \cdot \cdot \cdot Ti(3)$	3.42(1)	$Ti(2) \cdot \cdot \cdot Ti(4)$	3.43(2)
$Ti(1) \cdot \cdot \cdot Ti(2)$	3.67(1)	Ti(3)…Ti(4)	3.67(1)
$Ti(1) \cdot \cdot \cdot Ti(1)$	3.76(2)	Ti(3)…Ti(3 ¹)	3.76(2)
$W(1) \cdots Si(1)$	3.56(3)	$W(6)$ $Si(2)$	3.56(2)
$W(2)$ $Si(1)$	3.54(2)	$W(7) \cdot Si(2)$	3.543(3)
$W(3) \cdots Si(1)$	3.55(2)	$W(8)$ $-Si(2)$	3.53(2)
$W(4) \cdots Si(1)$ $W(5) \cdots Si(1)$	3.549(3) 3.56(2)	$W(9)$ $Si(2)$ $W(10)$ $-W(2)$	3.58(2) 3.60(3)
$Ti(1) \rightarrow Si(1)$	3.45(2)	$Ti(3) \cdot Si(2)$	3.40(2)
$Ti(2) \cdot Si(1)$	3.45(3)	$Ti(4) \cdot Si(2)$	3.41(3)

a Symmetry code: (i) $x, y, \frac{1}{2} - z$.

specific cation effects^{42 a-f}) and a conclusion reinforced during a recent, international workshop on polyoxoanions.⁴³

Figure 3. ¹⁸³ W NMR spectrum of $Si_2W_{18}Ti_6O_{77}^{14-}$ in D₂O (0.1 M, metathesis to $Li⁺$ salt, pD 3.2) at 21 °C. Chemical shifts in ppm are negative to higher field and are referenced to saturated $Na_2W\ddot{O}_4/D_2O$ using the substitution method. The clean spectrum indicates the purity and the stability of the compound, while the $2J_{\text{W}-\text{Q}-\text{W}}$ coupling constant of 15 **Hz** (visible at the base of the peaks) demonstrates that an A-type $\text{SiW}_9\text{O}_{34}^{10-}$ is retained in $\text{Si}_2\text{W}_{18}\text{Ti}_6\text{O}_{77}^{14-}$.³⁷

Figure 4. IR spectra of A- β -(Bu₄N)₄SiW₁₂O₄₀ (A) and A- β -(Bu₄N)_{7.5}H_{6.5}-Si₂W₁₈Ti₆O₇₇ (B). The new band at 700 cm⁻¹ is tentatively assigned to vibrations of the Ti-O-Ti bonds linking the two "A- β -SiW₉Ti₃O₄₀" halves.

The first step of mechanistic work is the complete characterization of all the products. In the present case, the crystallography and solution characterization unequivocally establish the structure of the major isolable product as the Ti-O-Ti-bridged species, $(SiW₉O₃₇)₂(Ti-O-Ti)₃¹⁴$. Reasoning by strict analogy to the established chemistry^{7a} of SiW₉Nb₃O₄₀⁷⁻ and its oligomerization reaction, $2SiW_9Nb_3O_{40}^7$ + 6H⁺ to yield $Si_2W_{18}Nb_6O_{77}$ ⁸⁻ + 3H₂O (and the reverse reaction of $6OH^- + Si_2W_{18}Nb_6O_{77}^{8-}$ to give back $2\text{SiW}_9\text{Nb}_3\text{O}_{40}^7$), it is reasonable to suggest (but still unproven) that the monomeric intermediate $\left[SiW₉(TiOH)₃O₃₇⁷- \right]$ (or a more protonated equivalent of this intermediate, e.g. $[H_xSiW₉(TiOH)₃O₃₇^{-7+x}]$) is a key intermediate in the synthesis of $Si₂W₁₈Ti₆O₇₇¹⁴⁻$ as eqs 1-3 illustrate (these equations are offered as a *minimum* initial mechanistic postulate only).

^{(42) (}a) Clare, B. W.; Kepert, D. L.; Watts, D. W. J. Chem. Soc., Dalton
Trans.1973, 2481. (b) Druskovich, D. M.; Kepert, D. L. J. Chem. Soc.,
Dalton Trans. 1975, 947. (c) Druskovich, D. M.; Kepert, D. L. Aust.
J. Chem. 19 Dalton Trans. **1978,** 1781. (g) Kyle, J. H. J. *Chrm.* **SOC.,** Dalton Trans.1983, 2609.

^{(43) (}a) Thesuggestion that ion-pairing effects arcan underappreciated **aspect** of polyoxoanion chemistry was raised during the discussion at the most recent polyoxoanion workshop: International Workshop "Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity", July 1992, Bielefeld, Germany. (b) Our own publications have noted (footnote 8a, p 1694 elsewhere⁷ effects in polyoxometalate chemistry and have provided evidence for Na⁺ ion-pairing effects for polyoxoanions in organic solvents (see p 1786 elsewhere⁷⁴).

Polyoxoanions Derived from A- β -SiW₉O₃₄¹⁰ *Inorganic Chemistry, Vol. 32, No. 23, 1993* **5101**

This scheme must be quite incomplete, however, as it does not even show the (nonisolated; unknown) product(s) which account for the other *ca.* 60% of the starting $HSiW_9O_{34}^9$. Clearly, additional product and then kinetic and mechanistic studies of this polyoxoanion, or virtually any other polyoxoanion which has been reported recently,' would be a welcome addition to the polyoxometalate literature.

Summary. The reaction of TiO²⁺ precursors with the lacunary polyoxoanion A- β -SiW₉O₃₄¹⁰⁻ gives rise to the previously unknown $A - \beta - Si_2W_{18}Ti_6O_{77}^{14}$ in up to *ca*. 41% yields. The compound has been unambiguously characterized in the solid state by X-ray single-crystal structural analysis and in solution by IR, ^{183}W NMR, and solution molecular weight measurements. Hence, the relatively new subclass of polyoxoanions of general formula $X_2W_{18}M_6O_{77}$ discovered earlier⁷ can now be said to be firmly established, an important point since others had expressed some skepticism about their existence.⁴⁴

Finally, it is worth noting that at least the $Si_2W_{18}Nb_6O_{77}$ ⁸⁻ member of this new subclass of polyoxoanions exhibits a relatively rich chemistry, being cleaved by⁴⁵ H_2O_2 to yield an allylic alcohol oxygenation prccatalyst,21a being cleaved by 3.0 equiv of OH- to yield the soluble-oxide support system $\text{SiW}_9\text{Nb}_3\text{O}_{40}^{7-7}$ and being cleaved by reagents such as primary and secondary amines or bifunctional alcohol amines such as $HOCH_2CH_2NH_2$.^{7a,46} Hence, and to the extent species like A- β -Si₂W₁₈Ti₆O₇₇¹⁴ mimic the reactivity of $Si_2W_{18}Nb_6O_{77}s$ ², the new subclass of X_2 - $W_{18}M_6O_{77}$ ⁿ⁻ polyoxoanions may be of interest for their relatively rich reaction chemistry (i.e. in comparison to traditional polyoxoanions). Such reactivity studies, as well as further product, kinetic, and mechanistic studies of the formation and degradation of these and other polyoxoanions, should prove of interest.

Acknowledgment. Thermal gravimetric analysis was obtained with assistance from Mr. Chris Grant and Professor William J. Randall. Y.L. thanks Professor A. T6z6 for valuable discussions during his sabbatical leave in Eugene. Support was provided by the **NSF,** Grant CHE-8313345, during the early phases of this research and then by the Department of Energy, Chemical Sciences Division, Office of Basic Energy, Grant DOE **FG06-** 089ER13998.

Supplementary Material Available: Five yield optimization experiments for $Si_2W_{18}Ti_6O_{77}^{14}$ including experimental details, results (Table A), and discussion, ¹⁸³W NMR peak patterns for A-type Keggin polyoxoanions and their M-O-M-bridged $X_2M_{18}M'_{6}O_{77}$ ⁿ⁻ analogs (Table B), plots of the ultracentrifuge molecular weight determinations in H₂O for $K_{12}H_{2}$ - $Si₂W₁₈Ti₆O₇₇$ and in CH₃CN for $(Bu₄N)_{7.5}H_{6.5}Si₂W₁₈Ti₆O₇₇$ (Figures A and B), and details of the data collection and structure refinement, bond angles, anisotropic thermal parameters, bond distances, symmetry operators, least-squares planes, and dihedral angles (Tables C-G) **(20** pages). Ordering information is given on any current masthead page.

⁽⁴⁴⁾ Day, **V.** W.; Klemperer, W. G.; Schwartz, C. *J. Am. Chcm. Soc.* **1987, 109,6030 (see** the statement on the top of p **6039).**

⁽⁴⁵⁾ Interestingly in this regard is the fact that Ti peroxides such as $Ti(O_2)(C_2O_4)_2^{2-}$ are well-known: (a) Nour, E. M.; Morsy, S. *Inorg. Chim. Acta* 1986, 117, 45. (b) Mühlebach, J.; Müller, K.; Schwarzenbach, G. Inorg. *Chrm.* **1970,9,2381.** (c) Griffth, W. P. *J. Chcm.* **Soc. 1964, 5248. (d)** Patel, **C.** C.; Jere, G. **V.** *J. Inorg. Nucl. Chrm.* **1963,25,1155.**

⁽⁴⁶⁾ Droege, **M.** Ph.D. Thesis, University of Oregon, **1984.**